
1

R.O.V.E: Robotics Mining Platform

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Mechanical Engineering & Computer Science

4/25/2019

TEAM MEMBERS

Anh Dao, CS

Luis Delatorre, ME

ADVISORS

Professor Michael Ciaraldi

Professor Kenneth Stafford

Project Number: KZSR

i

Abstract

As Earth’s natural resources are running out, scientists are searching for possible

substitutions for our planet and how to study these candidates. Robotic Mining Competition is

NASA’s annual event for university students to design a robot that can undergo the mining

challenge in the Mars-simulated landscape. Our project surrounded the WPI robot that

participated in NASA’s Robotic Mining Competition and focused on modifying current design

for the upcoming 2019 competition, while adhering to the new rules. The previous iteration of

the robot, Ibex, suffered from jamming issues and was unable to excavate the regolith simulant

utilized in the competition, in addition to the lack of competent self-localization. To address

these issues, our team focused on understanding the underlying causes of these problems to

mitigate the effects. We found that the previous manufacturing of the digging scoops and dated

electronic hardware contribute towards negatively impacting the robot’s efficiency. We designed

chain guides and altered the scoop fastening system to resolve the jamming and digging

ineffectiveness. To install a stable autonomous mode, we swapped out the complex control

system to a singular unified hardware. With these modifications, the robot is ready to compete in

the 2019 Robotic Mining Competition.

ii

Acknowledgement

This project would not have been possible without help from certain individuals that

assisted us by giving us guidance or by supplying us with resources.

First, we would like to express our gratitude to our advisors Professor Michael Ciaraldi and

Professor Kenneth Stafford, for their constant assistance in developing R.O.V.E and this report.

We would also like to thank Thomas Kouttron and Michael Cooke for the use of space in the

Higgins Labs, in addition to manufacturing.

Finally, we would like to thank those who sponsored our project: the Computer Science and

Mechanical Engineering Department of WPI, the office of the Dean of Arts and Science and the

Dean of Engineering.

Project Number: KZSR

iii

Table of Contents

Abstract i

Acknowledgement ii

Table of Contents iii

List of Figures vi

List of Tables vii

Chapter 1: Background 1

1.1 NASA Robotic Mining Competition 1

1.1.1 The competition 1

1.1.2 Markhor 1

1.1.3 Ibex 2

1.2 Mechanical Design 3

1.2.1 Other digging designs 3

1.2.2 Current design 5

1.3 Electrical Design 6

1.3.1 Current Design 6

1.4 Software design 8

1.4.1 Python 8

1.4.2 Robotic Operating System (ROS) 8

1.4.3 Current Design 9

Chapter 2: Methodology 10

2.1 Analysis on IBex 10

2.2 Improvements for R.O.V.E. 11

2.2.1 Digging Mechanism 11

2.2.2 Autonomy 12

Robot Self-Orienting 12

Crossing Obstacle Zone and Arriving at the Mining Zone 13

Mining Regolith and Gravel 13

Driving to the collection bin 13

iv

Aligning to the Collection Bin 14

Dumping to Collection Bin 14

2.2.3 A Dust Proof Design 14

Chapter 3: Ibex Detail Analysis 16

3.1 System Analysis of Current Digging System 16

3.1.1 Gearbox selection 16

3.1.2 Fasteners for Scoops 17

3.1.3 Chain system flaws 19

3.2 Control System Analysis 20

3.2.1 Hardware Complexity 20

3.2.2 Software Complexity 22

Chapter 4: R.O.V.E.’s Mechanical Design 23

4.1 Mechanical Design Considerations 23

4.1.1 Excavator feature requirements 23

4.2 Design Modifications 24

4.2.1 New Gearbox Selection 24

4.2.2 Fastener Design 24

4.2.3 Delrin Chain Guide 25

4.2.4 Mechanical Analysis 27

Chapter 5: R.O.V.E.’s Autonomous Design 29

5.1 Autonomous Operation 29

5.1.1 Self-Orientation 30

5.1.2 Mining Gravel 32

5.1.3 Depositing Gravel 33

5.2 Electrical Components 33

5.1.1 Main Computer - RoboRIO 34

5.1.2 Localization - Raspberry Pi and Cameras 34

5.1.3 Feedback sensors - IMU, Encoders and Servos 36

5.1.3.1 NavX as IMU 36

5.1.3.2 Encoder SRX 37

5.1.3.3 Servos 37

v

5.3 Computer Program 38

5.3.1 MagicBot Framework - Low Level 39

execute Method 39

Control methods 40

Informational methods 41

5.3.2 MagicBot Framework - High Level 42

5.3.3 Communication 43

5.3.4 Computer Vision 43

5.3.5 PID Closed-Loop Control 48

Chapter 6: R.O.V.E.’s Teleoperation 49

Chapter 7: R.O.V.E.’s Dust-Proof Design 50

Chapter 8: R.O.V.E.’s Performance Evaluation and Optimization 51

8.1 New Digging Mechanism Testing 51

8.1.1 Method of Testing 51

8.2 Software 52

8.2.1 Computer Vision 52

8.2.2 Autonomous Routines 52

8.3 Autonomy 53

Chapter 9: R.O.V.E’s Accessibility For Later Teams 54

9.1 Disassembly Guide (Excavator and Motor Mount) 54

9.2 Control System Guide 55

Chapter 10: Future Work 56

10.1 Mechanical Design 56

10.2 Electrical Design 56

10.3 Software Design 57

10.4 Testing Area and Robot Home 57

Chapter 11: Conclusion 58

Appendix 1: Robot Program UML Diagram 60

References 61

Project Number: KZSR

vi

List of Figures

Figure 1: Markhor Design Iteration .. 2

Figure 2: University of Alabama’s Robot During Competition ... 4

Figure 3: North Dakota State University’s Robot ... 4

Figure 4: Kent State University’s Robot During the Testing Phase ... 5

Figure 5:Ibex’s CAD Design, 2017 .. 6

Figure 6: IBex Electrical Diagram .. 7

Figure 7: R.O.V.E. Propped Upon Testing Frame .. 11

Figure 8: Output Shaft, BaneBot Gearbox .. 17

Figure 9: Connector Sun, BaneBot Gearbox .. 17

Figure 10: Reflex Curve .. 19

Figure 11: Complex Chain Path .. 19

Figure 12: IBex Electrical Diagram .. 21

Figure 13: IBex Control System Before and After the Competition .. 22

Figure 14: IBex Software System and Communication ... 22

Figure 15: Fastener Tab Design, Solidworks .. 25

Figure 16: Ibex Digging Engagement Sprockets .. 26

Figure 17: Delrin Chain Guide, SolidWorks .. 26

Figure 18: Chain Guide Profile, SolidWorks .. 26

Figure 19: SolidWorks Simulation of Forces Applied ... 28

Figure 20: R.O.V.E’s Autonomous Routine Flowchart .. 29

Figure 21: One Half of RMC Arena, NASA 2019 ... 30

Figure 22: Possible Starting Orientations of the Robot .. 31

Figure 23: R.O.V.E Electrical System .. 33

Figure 24: roboRio, National Instruments 2019 ... 34

Figure 25: Raspberry Pi 3 B+, Raspberry Pi .. 35

Figure 26: navX-MXP, Kauai Labs .. 36

Figure 27: SRX encoders, VEX Robotics 2019.. 37

Figure 28: Hitec HS-311 servo, 2019 ... 38

Figure 29: Code Snippet of an Execute Method in Scoop Module .. 39

Figure 30: Code Snippet of an Execute Method in Drive Module ... 40

Figure 31: Code Snippet of a Control Method in Drive Module .. 40

Figure 32: Code Snippet of an Informational Method in Drive Module 41

Figure 33: Code Snippet of other Informational Methods in Drive Module 41

Figure 34: Code Snippet of a State Machine Module ... 42

Figure 35: Code Snippet of Server Connection .. 43

Figure 36: 2018’s Computer Vision ... 44

vii

Figure 37: Sample ArUco Tags .. 45

Figure 38: Example 1 of Our Computer Vision with ArUCo Tag ... 46

Figure 39: Example 2 of Our Computer Vision with ArUCo Tag ... 46

Figure 40: Example 3 of Our Computer Vision with ArUCo Tag ... 47

Figure 41: Example 4 of Our Computer Vision with ArUCo Tag ... 47

Figure 42: Computation of Our Vision System .. 48

List of Tables

Table 1: Features and Their Shortcomings ... 23

Table 2: End Progress Table ... 58

1

Chapter 1: Background

1.1 NASA Robotic Mining Competition

1.1.1 The competition

Robotics Mining Competition (RMC), designed by NASA for college students to

participate in, is a simulation challenge surrounding the real experience of excavated material

known as regolith on Mars. The simulation is designed to replicate this mission, allowing

university teams to compete and present new designs that may possibly be utilized in future

space missions. The challenge is performed by a robot via remote control of an off-site base,

simulating the real world experience of piloting the space rovers - such as the Mars Curiosity

rover or the first rover on Mars, Sojourner [1].

Worcester Polytechnic Institute (WPI) has been participating in this competition with the

same robot under new improvements for the last three years while winning the Regolith

Mechanics award for the robot Markhor during the 2017 cycle. Last year’s robot Ibex, performed

well, however not to the extent of the excellence that WPI wishes to achieve.

1.1.2 Markhor

Markhor was the second robot from WPI that participated in NASA RMC after

Moonraker in 2009. Markhor won Regolith Mechanics Award as the result of the ability to

identify a specific regolith mechanics problem and improve their design to cope with it. Markhor

drive was designed with a tread to drive over any obstacles in the arena, collection system was

2

based off the bucket ladder design and dumping system was designed to hold a total capacity of

100kg. At the competition, Markhor was able to dig deep to 30cm to get to the gravel. Markhor’s

design focused heavily on the mechanical side which led to some electrical and software issues

at the competition. In addition, due to the complex design of the collector and bucket and the

aluminum frame, the robot was a little overweight.

Figure 1: Markhor Design Iteration

1.1.3 Ibex

Last year’s robot for WPI performed at the rank of 34 out of 44 robots that entered the

competition. Ibex was able to maneuver to the excavating location and back to the dumping

station, without slowing down from obstacles. In addition, the robot was able to locate itself in

the arena using cameras, and utilizing its position, traverse the arena. The primary challenge Ibex

had faced was during the improvements of the robots, the excavating system itself needed to be

updated rather quickly. Because of this rush of design, the manufacturing and actual design

weren’t optimized. This caused Ibex to underperform on the digging part of the challenge. The

3

motors didn’t have the required torque to run the chain system of the robot. This was understood

after the competition last year in May 2018, but released as part of the report of the MQP

involving Ibex.

1.2 Mechanical Design

 1.2.1 Other digging designs

In the top-ranking teams of the Robotic Mining Competition of 2018, stands the

University of Alabama, North Dakota State University in collaboration with James Madison

University, and Kent State University. Comparing and contrasting the design of their excavation

mechanisms can prove effective for optimizing the design of Ibex’s excavation system.

 The team in first place in the competition is the University of Alabama with the team

Astrobots. Their robot design for the year 2018 is not dissimilar to their robot during the 2017

cycle, which also had won first place during that competition as well. Both mechanisms used are

bucket dredging systems that carry the regolith from the ground, up the chain system, and

dropped over the dump bucket. [2] This system proved effective for two separate robots and

competition cycles.

4

Figure 2: University of Alabama’s Robot During Competition

North Dakota State University designed their robot in conjunction with James Madison

University that reached second place in the competition. This used a scoop similar to that of a

backhoe in construction vehicles. This excavation system was optimized to dig within the area of

the chassis of the robot, however, to dump the regolith onto the robot itself to score points. With

a background in digging already, this system is an obvious choice for optimal excavating design.

Figure 3: North Dakota State University’s Robot

5

Coming in third place in the robotic mining competition is Kent State University. They

produced a shovel design as their excavation system, digging regolith directly in front of the

robot and carrying it to the loading station. This system required the robot to dig and return to the

loading station multiple times instead of digging continuously for a long period of time.

However, this system allowed enough regolith to be delivered to the point of Kent State

University winning in third place.

Figure 4: Kent State University’s Robot During the Testing Phase

 1.2.2 Current design

Ibex carries a similar design of Alabama’s Astrobots, a bucket dredging system. The

design was manufactured last year, as an improvement to the 2017 cycle under the robot of

Markhor. The excavation system follows an effective design, but it was not implemented nor

manufactured to a level of quality. This was the bottleneck of the robot during the competition.

The focus of the problem stemmed from points, the design of the chain system and the

construction of the bucket scoops themselves. The scoops were designed in a rushed fashion, as

the rules changed halfway through the optimization of the robot. [3] The buckets were not

6

fashioned to the chain, reducing the stiffness of the system, producing the problem of not digging

into the regolith with enough force to dig efficiently.

 The second problem of the chain system is also attributed to reducing the amount of force

used by the scoops to dig into the regolith. There is a reduced amount of tension on the chains

themselves, as well as low torque due to being powered by one motor. This was noticed during

the competition, that the motor that operated the chain system drew too much power to complete

its task.

Figure 5:Ibex’s CAD Design, 2017

1.3 Electrical Design

 1.3.1 Current Design

On the current electrical system, the team from last year and two years ago used a fanless

micro box PC running Linux, as well as a CTRE HERO motor controller and an Arduino UNO

to interface with sensors and control servos.

The system is divided into four main subsystems: control station, robot software (the state

machine), motor board and sensor board. The control station is the software on our PC to directly

7

control the robot. The Robot software is run on a state machine on the robot that used Linux.

Finally, the motor board is compiled of HERO motor controllers and a sensor board that utilized

an Arduino. The HERO motor controllers’ interfaces with a Talon SRX to send signals to

motors, while the Arduino relays sensory data from the camera servos. The sensors are the IMU,

limit switches, and bump switches. The messages from the sensors are sent to the control station

via the robot software. The detailed diagram is included below:

Figure 6: IBex Electrical Diagram

8

1.4 Software design

The robot is currently programmed using Python, C#, and Java. C# is used to program the

HERO motor controllers, while JAVA is used for GUI and the rest of the robot is programmed in

Python. An important factor of the design is the autonomy of the robot, as a fully autonomous

robot is rewarded 500 points. To approach this challenge, we analyzed the pros and cons of each

language, as well as frameworks that are commonly used for autonomy.

 1.4.1 Python

Python is an easy language to implement into the robot, let alone control all the

subsystems. In addition, Python has plenty of built-in libraries to interface with C/C++ and for

other purposes [3]. That also helps with working across platforms such as Linux/Windows. In

robotics design, it is common to have multiple languages in one robot. Python helps to resolve

the issue of incompatibility between different systems. However, Python is not great when it

comes to speed and multiple threading [4].

1.4.2 Robotic Operating System (ROS)

ROS is a framework for writing robot software and has been the most ubiquitous

platform for many reasons. First, as we mentioned a robot has to interface with different systems,

thus different software languages. ROS helps to mitigate this problem and make things

communicate more efficient than regular APIs [5]. Second is modularity, ROS is structured to

make every component modular since everything is connected by a distributed system. This

means one system crashing doesn’t affect another system and messages are easily passed to

9

different components. Finally, ROS has simulation tools such as Gazebo and Rviz where you can

run the robot in a simulated world. In exchange for all the perks of using ROS, it has a deep

learning curve and doesn’t have proper documentation in comparisons to other frameworks.

 1.4.3 Current Design

The 2018 design has some automation programmed in Python. However, due to time

limitation, last year’s team never got to test it out on the field. They had a queue of messages that

would be sent over a socket connection from the control station (PC) to the Linux box on the

robot. This acts as the state machine, where each state will have a corresponding logic that talks

to the control station that the robot is ready to go to the next message in the queue. To

communicate with the HERO board and the Arduino, they created separate threads to constantly

talk over a serial connection to see if any of the incoming data was different from previous data.

This data was used to determine in various places if the robot is ready to move on from the

current message. To communicate with the control station, they had a TCP/IP socket connection

open and talked back and forth with the control station that way.

To switch to ROS, there will need an overhaul of the current code but there are other

advantages coming along with using ROS. Thus our next step was to evaluate whether our team

was staying with Python or switching to ROS as a better choice.

Project Number: KZSR

10

Chapter 2: Methodology

For this year iteration, the name of the robot will be known as R.O.V.E. (Robotics Outer

space Vehicle for Exploration). The steps required for this project to become successful what

follows and R.O.V.E will be upgraded based on these objectives.

2.1 Analysis on IBex

To understand the issues as well as opportunities for development on IBex, our team first

analyzed its performance mechanically and programmatically. Our initial analysis began with

understanding how the robot operated without any form of external load. Initial testing was

performed as the robot was manually controlled, while suspended on a wooden frame to allow

the digger to operate without interference. At the current status under no load, the robot

encountered issues relating to jamming and their sources. By initially separating individual

problems causing the jamming to target, we were able to develop an understanding of how these

issues contributed to the larger problem of digging inefficiency. During our analysis during

testing, we found that the electronics and wiring were poorly performed. Without proper wiring

instructions in addition to lack of electronics to operate the robot remotely, we operated the robot

manually through powering specific motors directly. This did allow us to test individual systems

directly for any mechanical failures without the dependence of any software related issues.

11

Figure 7: R.O.V.E. Propped Upon Testing Frame

2.2 Improvements for R.O.V.E.

After analyzing and evaluating ROVE’s performance, we decided to focus on the

following aspects.

 2.2.1 Digging Mechanism

The main focus mechanically to improve are the bottlenecks of the excavation system,

the chain system and scoops. Improving the fastening system of the buckets to the chain will

reduce the sway of the scoops when digging the regolith. Currently, they are not fastened in an

adequate fashion, which was the result of poor and rushed manufacturing processes.

A possible way to improve the stiffness is to increase the torque to the chain system, by

adding a second motor or gearbox. Including a second motor would allow the excavator enough

torque, and even to the point of having excess torque if needed, to dig without running into

power draw related problems.

12

The intent of these improvements is to see the excavator dig down to the depth of 40

centimeters, reliably every attempt. In addition, this project wishes to measure the amount of

regolith is excavated during the 10-minute duration.

 2.2.2 Autonomy

During the competition, fully autonomous robot will be rewarded with 500 points. WPI’s

teams never performed any autonomy at the RMC due to other mechanical issues we faced.

During 2018 competition, IBex did not run into any software problems. Therefore, we can move

forward to implementing autonomy on the robot. As part of the competition, the robot should be

able to cross the obstacle field, excavate, and return to the collection bin to deposit regolith. This

is performed while the robot must be run autonomously for the full ten-minute round to receive

full 500 points.

In order to achieve autonomy, we identified these main routines and possible feedback

sensors that can be implemented.

 Robot Self-Orienting

When the competition first starts, robot is facing a random direction. To self-orient itself,

robot can use a LiDAR sensor to detect the BP-1 layer in the mining area and as well as the

collection bin. Upon mapping out the location of the bin, robot would rotate itself to face the

mining zone.

13

Crossing Obstacle Zone and Arriving at the Mining Zone

Once the robot figured out the its complete orientation, it has to drive across the obstacle

zone. The robot’s treads were specifically designed to drive over any obstacle, so there would be

no need to drive around them. An IMU can be used to assist the robot to drive straight and

achieve a desired distance. The length of the arena is known at the match, so we can input a

distance prior to the start of the round. Once the robot reaches the set distance, it would then

proceed to the next state.

Mining Regolith and Gravel

This step involves the robot to dig and collect as much gravel it can, up to its maximum

capacity within the allowed time. This year, despite the mining field’s formation of regolith and

gravel, only gravel is rewarded with points. This means the 30 cm of BP-1 will be only excess

material to dig through. Once the robot has reached the Mining Zone, the robot will extend the

digging arm and drive the scoops. Upon extending up to 40 cm the robot will start a gradual

drive in reverse, towards the collecting bin area while still collecting the gravel. An encoder will

be used to know how deep the digger has extended and current draw will be taken into account in

order to notify jamming.

Driving to the collection bin

As it collects and is driving backward to the collection bin area, the robot performs three

checks simultaneously. If the hopper’s capacity is reached, the robot has reached the obstacle

area, or if enough time is not left to complete the run, the scoops will stop running and the

extender retracts to its original position. The robot will then continue to drive backwards to the

14

collection bin. The IMU is used to help the robot to drive back to the same location where it

started, parallel to the bin.

Aligning to the Collection Bin

Once the robot is driven back to the collection bin, it would turn 90 degrees

counterclockwise to be perpendicular to the bin. The robot would then start driving backwards

again, until two bump switches are engaged against the bin. Bump switches are implemented to

make sure the robot is in contact with the bin to avoid dumping imprecisely out of the bin. If one

switch is not engaged, then dumping will not occur and the robot would adjust itself to align

properly.

Dumping to Collection Bin

Finally, once both the bump switches are engaged, the robot will start running the

conveyor belt to unload the contents from the bucket to the collection bin. The conveyor belt will

run to an adequate speed for proper disposal of the contents. After the contents have been

displaced, the robot will stop running the conveyor system. If there is time left even afterwards,

the autonomous routine will restart.

2.2.3 A Dust Proof Design

As part of the competition grading criteria, designing dust proofing the robot’s

electronics and gearing system allow for additional points, up to 100 points for a completely

dustproof and clean robot. The current design for dust proofing the electronics and gears involve

plastic covers duct taped to enclose and air sealed. The problem arises when the robot needs to

15

be worked on, and the electronics or gearing needs to have access to, the tape needs to be

removed then replace. Replacing all old plastic covers with plastic tupperware would allow ease

of access to any dustproof parts. Tupperware is waterproof, stopping the dust from breaching as

well. In contrast to the plastic covers and duct tape, tupperware has a resealable cover that could

allow quick access without destruction. As a secondary goal, dust proofing through this method

would keep future improvements easier to perform.

Project Number: KZSR

16

Chapter 3: Ibex Detail Analysis

Through our initial analysis, we found here the shortcomings of the previous year’s iteration of

the robot.

3.1 System Analysis of Current Digging System

3.1.1 Gearbox selection

The first issue noticeable without testing was the combination between the selected

gearbox and motor driving the digging system. The current motor utilized is a VEX 775Pro

connected to a BaneBots P60 custom 256:1 planetary gearbox, which is not rated for safe

operation with the 775pro [7,8]. During manual operation the robot underwent jamming,

however the jamming issues always fixed itself as the motor attempted to stall then broke

through the jam. After close inspection of the gearbox internals as well as the motor seen in

figures 8 and 9, it appears that the motor at stall torque would slowly shear the internals of the

gearbox. The input coupler as well as the first stage sun gear were damaged at their connectors.

We found as the motor reached stall torque upon jamming, that the gears internally would slowly

shear although only enough to allow the gearbox to still be functional.

17

Figure 8: Output Shaft, BaneBot Gearbox

Figure 9: Connector Sun, BaneBot Gearbox

3.1.2 Fasteners for Scoops

Upon inspection of the scoops and how they were implemented, in addition to the

reasoning behind their manufacturing allows some context as to the problems that these scoops

had overcome while understanding the shortcomings of this design. The scoops were attached to

the chain system four bar linkage design, using stock aluminum tabs connected to the scoops

along with plastic spacers. Closer inspection of the tabs appear that the hole drilled for screws

were not properly dimensioned nor manufactured in a standardized format. The tabs were

18

manufactured poorly and in a rushed manner, using scrap aluminum without dimensioned cuts or

slotted holes.

This design was originally created as to allow the scoops to traverse through the

geometry of the chain drive system. Found in figure 10 can be seen a reflex point, which the

scoops need to rotate over, then continue along its path to dump the gravel and BP-1. This was

one of the points that the scoops were purposely designed to allow movement through the reflex

point. In addition, there is a point near the end of the dumping path where the scoops travel

through complex geometry, found in figure 11. Here is where the jamming issues had occurred,

as previously mentioned. The design of the four-bar linkage did not take into consideration the

placement of the sprockets and therefor causing jamming issues. The scoops jam as the geometry

of the four-bar linkage is impossible to physically solve, however then it breaks from the motor

reaching stall torque. The chain itself started to jump off the sprockets, both when the digging

system was extended and retracted. From there, we tried to determine any possible variable

changes. Using a camera with slow motion capabilities, we were able to record when the scoops

and chain jumped and jammed. The scoops fasteners appear to have been damaged and we have

identified this to be a large problem relating to the overall issue of the robot.

19

Figure 10: Reflex Curve

Figure 11: Complex Chain Path

3.1.3 Chain system flaws

The chain system that travels on the path for the scoops travels through complex geometry of the

robot, shown previously. However, the chain does not suffer any problems at this point. The

chain becomes damaged, however, through machine working on the opposite end of the robot.

The chain itself, when undergoing the digging process, machine works against the side plate

20

frame of the digging system which would increase drag forces along the path of the chain,

additionally increasing the tension on the tape drive of the digging system. This forces the motor

to increase the amount of power and torque in the system.

3.2 Control System Analysis

Our first attempt was to develop autonomy based on the existing control system.

However, as we started to analyze deeper into the existing control system, we begun understand

how complicated the . The next question is whether we want to try to understand the complexity

and develop on it or start from scratch.

3.2.1 Hardware Complexity

Before understanding the code, we had to first understand the structure of the control

system. As mentioned above, the previous control system was extremely complex. On the robot

alone there were a Linux box, a HERO Board, and an Arduino just to control the functionalities

of the robot. This created a problem when testing as every piece of hardware has to be powered

through different sources, while communication ports have to be opened and ready to

communicate. To mitigate the issue, developed on the reasons as to the function of each piece of

hardware and if we could consolidate under one system. We wanted to answer two questions:

1. Can the Talon SRX be connected directly to the Arduino so we can remove the HERO

Board?

2. Can the Arduino communicate with our control station so we can remove the Linux box?

21

Figure 12: IBex Electrical Diagram

As an answer to the first question, Talon SRX can be wired to Arduino board but

indirectly through an Arduino Shield, another board. Thus this would not be an option. Arduino

can communicate to a PC through serial port to replace Linux Box. However, Arduino’s

performance is slow and will be inefficient to run the autonomous program. Additionally,

switching to Arduino will requires a rewrite of the entire robot’s machine that is currently in the

Linux Machine in the Arduino environment.

The second setback we encountered when we took over the robot was the fact that all the

electronics were unwired by the team before us. After 2018 competition, all the wires got terribly

tangled, seen in figure 14, so the team decided to take apart the hardware with an attempt to

rewire them but unfortunately, they did not. The schematic was not detailed enough for us to

identify where the wires should be connected to. Thus, this motivated us to produce a dust-proof

and more secured housing for our hardware.

22

Figure 13: IBex Control System Before and After 2018 Competition

3.2.2 Software Complexity

We were able to ask for the Github repository of IBex. The code itself was neat.

However, there was no instruction on how to power the control system up or how wires are

connected. Additionally, we could not understand how programs communicate with one another,

programmatically. Much effort was dedicated to reading and understanding the code and how

exactly messages are being sent from Control Station to Motor Board and vice versa.

Figure 14: IBex Software System and Communication

Project Number: KZSR

23

Chapter 4: R.O.V.E.’s Mechanical Design

4.1 Mechanical Design Considerations

4.1.1 Excavator feature requirements

Our team decided that ROVE would be best to modify the current design for the scope of

this project instead of creating an overhaul redesign of the system. After locating the features

need to be considered for our current design and how it would be implemented into

specifications involving the rules of the competition. We identified key features to be addressed

shown in table 1.

Table 1: Features and Their Shortcomings

Scoop Motor

Fasteners connected to scoops and chain Improper gearbox

Lack of support for cantilever forces Prevent potential jamming to reduce damage

 Our modification would require that the digging depth be 40 cm from the surface of the

ground, enable to reach the gravel located after 30 cm of initial depth. The scoops need to be

supported during the digging process, which produces heavy cantilever forces on the chain. This

would require either more fastening points of the scoops to the chain to reduce the load at each

point or to develop a support for the scoop to prevent deflection during engagement with the

ground. This needs to be performed while still allowing the scoops to rotate and travel around the

driving sprockets and the complex chain path.

24

4.2 Design Modifications

4.2.1 New Gearbox Selection

The original gearbox was not rated for a 775Pro motor, which had initial problems with

the safety rating for the motor. Therefore our team had purchased a gearbox designed for the

775pro, the Versaplanetary gearbox. Our ratio for the motor was 250:1, compared to the 256:1

BaneBot gearbox. We selected this gearing ratio based around the motor we were using, in

addition to the safety rating of the gearbox itself at the selected ratio. This is to prevent any

damage the motor would cause to the gearbox in case of potential jamming, similar to last year’s

scenario. To accompany the new motor, we redesigned the mounting plates as well as replaced

the customized sprocket hubs with standardized hubs for ease of implementation.

4.2.2 Fastener Design

After understanding the initial conditions of why the previous year’s fasteners were

designed, we decided to change the design of the fasteners from a rotating linkage to a singular

tab, inlaid in with scoops themselves. This would allow our team to simulate the scoops as a

singular cantilever beam, as the scoops become a singular rigid body with the chain. Seen in

figure 16, we produced these tabs from plain carbon steel, as the reactionary forces applied to the

tab during digging engagement would cause aluminum tabs to fault.

25

Figure 15: Fastener Tab Design, Solidworks

4.2.3 Delrin Chain Guide

To provide the support to the scoops, needed when engaging into the ground, our team

manufactured a custom closed faced chain guide utilizing Delrin as the material. This profile was

designed to encompass the entirety of the roller chain excluding only the tabbed face. We

selected Delrin for its self-lubricating capabilities, in addition to the ease of machining. We

utilize the softness of Delrin as our form of tolerancing while digging. If potential regolith or BP-

1 attempts to enter the chain guide, then as the chain travels through the guide the regolith or

sand would get pushed along and potentially machine through the profile. This would allow even

smoother use as the profile expands but also helps clean the chain guide to reduce jamming. The

custom profile was designed solely to encapsulate the master links attached to the chain, as

chainguides on the market have a profile design for only simple roller chain. The profile was

created to follow the original path of the chain when the sprockets were originally attached,

which can be found in figure 17.

26

Figure 16: Ibex Digging Engagement Sprockets

Figure 17: Delrin Chain Guide, SolidWorks

Figure 18: Chain Guide Profile, SolidWorks

27

A new excavator side plate was designed for the purpose of holding the chain guides in

place. The design was formed from the previously used pattern, originally created to help reduce

weight. Figure (3) shows the final product with the chain guide attached.

4.2.4 Mechanical Analysis

After determining the shape of the scoop system, our team simulated a simple rigid body

design in SolidWorks to determine the stress analysis and forces involved while digging. We

calculated the force from the motor applied to the chain using force statistics and created a basic

analysis. We determined the motor to be running during the competition at 16A, using data

retrieved from previous year’s competition. The motor would have an output torque of 0.72

in*lbs., in which we could determine the forces applied to both the scoop, tabs and chain.

If: 18.5 A = 0.84 in.*lbs. 9.6 A = 0.42 in.*lbs.

=> 0.72 in.*lbs. = 16 A

Torque ratio: 250

Tau = 250 (0.72)(0.9) = 162 in*lbs

36 teeth ⅜ radius

Force applied to distance = (36 * ⅜) / (2 * pi) = 2.15 in

Fc = 75.35 lbs applied to the scoop

We theorize the force applied to the scoop will be approximately 75 lbf maximum to the

tip of the teeth. Using SolidWorks simulation, we created a singular simple mesh of the scoops,

tabs and chain. We then fixtured the chain ends in proper orientation to how it would interact

28

within the chain guide. The only points of possible failure found in this simulation were on the

chain tabs themselves, on the corner connection to the tab from the chain. However, beyond this

potential mode of failure, the rest of the simulation represented that the scoop and new tab would

not deform under these predicted forces.

Figure 19: SolidWorks Simulation of Forces Applied

Project Number: KZSR

29

Chapter 5: R.O.V.E.’s Autonomous Design

A major focus for this year’s robot programmatically is the implementation of autonomy.

After being able to understand and analyze the previous program, we could see that it was

partially autonomous where computer vision could identify the if the robot is offset the left or the

right of the goal image to align perfectly to the goal. A set of tasks can be queued up to execute.

However, there were no feedback sensors implemented for automated activities to run timely in

the right behaviors. With all the issues we identified above, we decided to completely swap out

last year’s control system to make autonomy more accessible.

5.1 Autonomous Operation

The attached flow chart describes the autonomous operations in detail.

Figure 20: R.O.V.E’s Autonomous Routine Flowchart

30

The autonomous operation is simplified into three main focuses.

5.1.1 Self-Orientation

At the start of the competition, the robot will be facing a random direction. Thus, the first

step of the autonomous operation is to have the robot identify what direction it is facing and

therefore rotate to aim towards the mining zone. The self-orientation process is assisted by two

cameras placed on left and right of the robot, each camera is mounted on a servo, and a visual tag

attached in the middle of the collecting trough. The collecting trough is on a side of starting

zone.

Figure 21: One Half of RMC Arena, NASA 2019

ro
bot

Righ Left

t
a
g

31

There are six possible positions that the robot will be facing:

Figure 22: Possible Starting Orientations of the Robot

Depending on which side of the robot the trough will be placed, that side’s camera will

run first. Right now, we are assuming the trough will be on the right of the robot for this year’s

competition. Thus, right camera will run first. Each camera will scan at 0, 45, 90, 135 and 180

degrees servo angle to make sure the tag is identified. If the right camera does not capture

anything, the program will run the left camera and know that the robot not facing forward so the

robot will have to turn a larger angle to face the right direction - meaning it faces the mining

zone.

With the visual tag that we use, the robot can align itself parallel to the trough. Once it is

aligned, the robot will reset its navX, encoder, camera servos and get ready to drive straight to

the mining zone. An encoder is mounted on the drivetrain motor shaft to assist drive distance.

32

Notice that here we discard driving through the obstacle zone since the robot was designed with

treads to drive over the obstacles and the cow catchers push the obstacles out of the way.

5.1.2 Mining Gravel

Mining logics have to take into consideration how deep the extender has extended and

how much current the scoop is drawing while digging. It is important to run multiple manual-

operated tests prior to autonomy to note the robot’s digging current on regolith and gravel. For

example, from Markhor, we learn that when the scoop is not digging (not fully emerged in sand

or gravel), it drew around 1.5A. When the scoop dug only sand it drew on average 6.5A and

gravel from 17-18A. Knowing whether the scoop is digging or not is important so we can extend

the extender down more. In the competition arena, gravels will be found from within 30 cm of

depth and gravel is found from 30 to 40 cm. Once the extended has reached 40 cm (maximum

depth) and the scoop signals that it is not digging anything anymore, that means we have dug

everything available at the position, we will start slowly driving backward to dig more gravel at

the depth of 40 cm. We won’t be driving to different spot, to avoid going through the process of

digging through regolith again since only gravel is rewarded with points.

One of the techniques we learned to avoid jamming programmatically is to run the motor

reversely. When the scoop motor controller - Talon SRX - senses that the current is going pass

the gravel digging range and reaching the jamming level. The program will automatically detect

the signal and will run the motor reversely for two seconds.

Similar to drive distance, an encoder is mounted on the extender’s shaft to convert ticks

to meters to monitor how deep the extender has extended.

33

5.1.3 Depositing Gravel

Timing is taken into account during the whole process. The robot will dig until time is

almost up but still enough time left to drive back and deposit gravel.

The robot will drive backwards to where it starts - where the encoder position is 0. Once

it is back to the starting zone, it will turn 90 degrees CCW and start backing until both bump

switches are pressed in. Once both bump switches are pressed, it will start depositing the gravel.

5.2 Electrical Components

When we were trying to research a way to simplify the robot control system, we found

that besides the HERO board, a roboRIO board can also connect with Talon SRX through CAN

bus. In addition, there are other pros that will be discussed in this section. Therefore, we decided

to overhaul the entire robot control system and start from scratch.

Figure 23: R.O.V.E Electrical System

34

5.1.1 Main Computer - RoboRIO

RoboRIO, made by National Instruments (NI), is a robot computer that can interface

directly with our computer and the motor controllers Talon SRXs. In addition, it also has built-in

ports for cameras and sensors like switches and the IMU. The roboRIO will replace the previous

Linux machine, HERO board and Arduino. RoboRIO board allows faster integration and simpler

programming system. We will only need one control system rather than four different programs

like before.

RoboRIO supports Java, C++ and Python. It has its own built in libraries to support the

integration with motor controllers and sensors.

Figure 24: roboRio, National Instruments 2019

5.1.2 Localization - Raspberry Pi and Cameras

Choosing the right computer vision system is essential to complete the localization

process. We identified options for sensors for localization. We originally planned to use a

35

LiDAR to map out the field. However, after our research, we realized LiDAR is more costly and

provides higher functionalities than we need. Thus, we decided that using a camera vision is

adequate for our needs. We reused the cameras we had from last year, the Logitech HD 1080p

cameras.

The cameras will be placed on the left and right side of the robot to completely scan 360

degrees of the robot’s surrounding. The roboRIO has USB ports for cameras. We were originally

running the vision system on the roboRIO. However, after identifying the visual tag that we will

use to support the robot’s self-orientation - ArUco marker (this is covered in section 5.3

Computer Program), developed by OpenCV’s extended libraries - Opencv-Contrib, we ran into

an issue where the roboRIO does not support the installation of opencv-contrib library. To solve

the problem, we use a Raspberry Pi 3 B+ as a co-processor to run the vision system. Using

Raspberry Pi to run the computer vision gives us a advantage of reducing CPU usage on

roboRIO so the RIO can focus on other autonomous operations and running a faster vision

system on Raspberry Pi.

Figure 25: Raspberry Pi 3 B+, Raspberry Pi

36

To physically communicate, the Raspberry Pi and the roboRIO both are plugged into an

ethernet cable to the same router. We gave both the Pi and the RIO a static IP address. Data is

sent to a NetworkTables which is discussed in section 5.3.3 Communication.

5.1.3 Feedback sensors - IMU, Encoders and Servos

5.1.3.1 NavX as IMU

Autonomous operations require the robot to report its heading and the digger’s depth. To

track the robot’s angle and driven distance, we will use a navX-MXP, which is a 9-axis

inertial/magnetic sensor and motion processor. One of its features is measuring robot’s roll,

pitch, yaw angle. Moreover, the navX integrates directly with the roboRIO. It can be plugged

into MXP port on top of the roboRIO without any wire.

Figure 26: navX-MXP, Kauai Labs

37

5.1.3.2 Encoder SRX

In order to increase accuracy for robot’s heading and also how far the digger has

extended, we use encoders to mount on the motor’s shaft on one end and wire with Talon SRX

motor controller on the other end. The quadrature SRX encoders are produced by the same

company that makes the Talon SRX so they are compatible and easily physically and

programmatically connected.

Figure 27: SRX encoders, VEX Robotics 2019

5.1.3.3 Servos

Cameras are positioned in a way such that each of them can scan 180 degrees on the left

and on the right of the robot. Unfortunately, our cameras’ maximum field of view is only 76

degrees. Therefore it won’t be seeing a complete 180 degrees. Instead of rotating the robot

around until the cameras catch the visual tag, we will place the camera on servos to reduce power

38

usage from running the drive motors. The servos that we use are the Hitec HS-311 servos that

can turn 360 degrees. The servos can be wired directly onto the roboRIO through PWM ports.

Figure 28: Hitec HS-311 servo, 2019

5.3 Computer Program

Despite our original plan of using Robotics Operating System (ROS) as our main, we

decided to move on with another option due to ROS complexity for first-time robotics

programmer. We implemented MagicBot for the robot program [11]. MagicBot is a Python

framework for roboRIO environment, designated for creating robot programs and often used in

FIRST Robotics Competition. roboRIO supports Java, C++ and Python. However, the newly

developed Python libraries have a simple simulation where robot code can be run and tested.

39

5.3.1 MagicBot Framework - Low Level

In this program, we created six components to control six main parts of the robot:

Drivetrain, Extender, Scoop, Dump, Camera and Camera Servo. Detailed UML is attached in

Appendix A. Each component consists of different functions, but there are three main types of

functions:

● Control methods

● Informational methods

● An execute method

execute Method

In MagicBot framework, execute method is called periodically by the machine to send

data directly to the device, such as setting the power to the motors. It is the lowest level of

programming where function interacts directly with the devices. In our program, execute

method looks like this

Figure 29: Code Snippet of an Execute Method in Scoop Module

Or more complicated:

40

Figure 30: Code Snippet of an Execute Method in Drive Module

Control methods

Control method are low level “verb” functions that provide useful abstraction such as

drive_forward, stop, rotate. These control methods store important values to perform a desired

action. However, this don’t directly execute the action, they only set the values such as power

and then execute method will carry the action out. Control methods are called by and receive

input data from the high level:

Figure 31: Code Snippet of a Control Method in Drive Module

Here target_position is calculated from meters input from higher level and then get sent to

execute method to signal the motor controllers to drive a certain distance.

41

Informational methods

These are methods that are used to tell something about the components, typically used to

check if previous activity was done or if the condition is satisfied for next activity to be carried

out. For us, we have these to check whether the robot has rotated a given angle or whether goal is

found before driving forward and so on.

Figure 32: Code Snippet of an Informational Method in Drive Module

Figure 31 is showing an informational method in Drive module to check if the robot is done

rotating and came to complete stop before moving onto the next state to avoid driving while still

rotating.

We also have informational methods to solely return a sensor’s value or reset a sensor so that the

high-level modules won’t directly interact with devices when they need to check values

Figure 33: Code Snippet of other Informational Methods in Drive Module

42

5.3.2 MagicBot Framework - High Level

High level components are those that control other components to carry out the

automated behaviors. This can be view as the state machines. Each component can be set to run a

certain time as timed_state or a state run until informational method returns a satisfactory

condition to switch to a next state

Figure 34: Code Snippet of a State Machine Module

Here is a code snippet from our main state machine. We import the low-level components

that will be used such as Drive and Dump. There are two states: docking and start_dumping.

However, before transitioning to start_dumping state, our state machine has to check whether it

43

is ready to dump (whether the robot is aligned perpendicular and touching the collecting trough)

before calling the Dump component to execute the dump motor.

5.3.3 Communication

To communicate across components and to external program such as our vision system

on Raspberry Pi, we use NetworkTables. This can be thought of as a common table that is shared

among processes. This table contains values that will be updated continuously. Values can be get

or set by any components. NetworkTables can be connected through static IP address

10.XX.XX.2 or mDNS Hostnames roborio-XXXX-frc.local where XXXX is FIRST team

number. Ours is 190

Figure 35: Code Snippet of Server Connection

In our program, we update to NetworkTables the devices’ values such as the Talon

SRX’s current drawn or the navX’s yaw angle to use by other components.

SmartDashboard is a software by NI installed our computer to interface with roboRIO. Data that

is sent via NetworkTables is viewed on SmartDashboard.

5.3.4 Computer Vision

Computer vision was one of the main focuses and an essential step for the robot to

operate robustly during self-localization process. In this process, we will be using OpenCV

library to process images. We also acknowledged that 2018 team developed a vision system that

44

used two-shape image as a target to identify which side (left or right) the robot is offset and thus

calculate the angle.

Figure 36: 2018’s Computer Vision

This year, our goal was to choose a target image that can be easily recognized under

dusty condition and also can report the angle and distance from camera to image. We could have

developed from last year’s work, however after researching we found a visual tag called ArUco

tag that has built-in functions to support pose estimation. ArUco is a fiducial marker that

45

provides fast and robust detection with a single tag. ArUco library can be implemented from

opencv-contrib library (extended library of the regular Opencv) - this was also the reason why

we couldn’t run ArUco on roboRIO.

Figure 37: Sample ArUco Tags

In the program, we will have to specify the ArUco tag ID number and size (in mm) for

the camera to recognize. Tags can be generated from an online generator (such as

http://chev.me/arucogen/). A single ArUco tag is able to tell x, y, z distance from tag to camera.

From the rotation matrix it returns, we are able to convert the rotation matrix to Euler angles to

compute roll, pitch, yaw angles from camera to tag and vice versa.

http://chev.me/arucogen/

46

Figure 38: Example 1 of Our Computer Vision with ArUCo Tag

Figure 39: Example 2 of Our Computer Vision with ArUCo Tag

47

Figure 40: Example 3 of Our Computer Vision with ArUCo Tag

Figure 41: Example 4 of Our Computer Vision with ArUCo Tag

48

Robot rotating angle will be computed by adding the servo angle to the ArUco’s pitch

angle. Angles are computed differently for left and right camera, depending on which direction

the robot faces relative to the front of the field.

Figure 42: Computation of Our Vision System

Visual tag returns an offset angle from the camera to the horizontal green line. Tag angle

and servo angle can be both positive and negative depending on its pose. Therefore when they

are added, they will return the true robot angle.

5.3.5 PID Closed-Loop Control

PID closed-loop concept is implemented for most feedback devices we have in order to

increase accuracy for the automated behaviors. We used PID control for our navX and encoders

to ensure that robot rotates and drives accordingly as commanded. Errors are fed back to sensors

to make sure the robot behaves more accurately.

Project Number: KZSR

49

Chapter 6: R.O.V.E.’s Teleoperation

On top of autonomy, R.O.V.E is equipped with teleoperation for two purposes.

Teleoperation assists us on testing different functionalities of the old and new system to make

sure everything runs steadily before putting the robot into autonomous mode. Secondly, if

anything happens during the autonomous run, the robot can always be controlled manually.

The robot can be controlled manually with the a game controller plugged into our laptop.

Without pressing any button, left and right joystick’s Y-axis will control robot drive motor. With

left stick in charge of speed and right stick in charge of rotational angle. When A button is

pressed and held, right joystick Y-axis controls the extender’s motor. When B button is pressed

and held, right joystick Y-axis controls the scoop’s motor. When X button is pressed and held,

right joystick Y-axis controls the dump’s motor. Since Y-axis value from -1 to 1 from North to

South direction, we flipped the value of Y-axis so that robot motor runs forward when joystick is

pressed to upwards.

Project Number: KZSR

50

Chapter 7: R.O.V.E.’s Dust-Proof Design

Our team plans to implement all electronics in a custom made box using the material

polypropylene. This design will be a two shelved box encompassing all electronics in which wire

connectors will be hot glue gunned through wire holes. This will allow connection from the

inside and outside of the box without allowing large openings for dust to enter the actual box.

Side holes are patterned on the side of the box in effort to allow some air to flow through the box

while mitigating any dust to travel vertically into the electronics. The wire connectors will

connect to all electronics and motors on the outside. This box will be fastened with machine

screws to allow ease of access to the electronics.

Project Number: KZSR

51

Chapter 8: R.O.V.E.’s Performance Evaluation and

Optimization

The new designs were constantly tested during developing process, whether or not on the

whole robot, in order to make adjustments on time.

8.1 New Digging Mechanism Testing

The process to test for potential upgrades was used consistently throughout the design

process to reduce possible unknown variables limited by the software and operation of the robot.

8.1.1 Method of Testing

To test during initial analysis, in addition to testing upgrades, our team had directly

controlled individual motors and only operated a singular motor one at a time. Upon connecting

the designated motor controller - Talon SRX, we powered the motor using the teleoperated

controller to regulate motor speed and power distribution. This was performed for the digging

chain system and the tape drive extender. The analysis began with multiple scoops attached, then

procedurally remove scoops until only one remained. All following testing was performed with

only one scoop for the sake of reducing any variety in scoop design to test the chain guide.

 For the digging system, the scoops would run under no load, to determine any possible

issues with the design. The scoops were driven under the minimum of 2 Amperes to minimize

any potential damage that may be caused during operation. This procedure of operating the

motor is the same for the tape drive motor. To allow the robot to operate with its excavation

52

system, the wooden frame was built to operate the robot without load, while suspended. This

enables the robot to be viewed at full extended length and retracted without specific set up for

each configuration, while allowing possible modifications at the same time.

8.2 Software

There were multiple methods we used to test the software without requiring the robot to

be fully constructed.

8.2.1 Computer Vision

Computer Vision can be tested separately from the robot. Cameras are mounted on the

servos when tested. One camera/servo is run first and if it cannot find the goal image, second

camera/servo will then run. Once the visual tag is found, the angle and distance values from tag

to camera are sent to NetworkTables. Raspberry Pi and roboRIO worked great on

communicating with each other and with our laptop. Through testing, we were able to add some

time delay of 3 seconds between rotations so that camera can capture the visual tag.

8.2.2 Autonomous Routines

Before running the entire ten minutes of autonomy on the 150lb-robot, we ran the code

on Talon SRX. With the green/red LED signals to make sure that timing is correct and motors

are only powered when it is set. By doing so, we were able to find some loopholes in the

program logic and fixed them. In addition, one thing the state machine was missing is setting the

output value of the running motor controller to 0 before switching to the next state. There was

difficulty where even though the drivetrain speed and rotational rate are set to 0, its Talon motor

53

controller was still powered. Through debugging process, we found out that we needed to disable

navX PID controller along with zeroing out the motor power. NavX was not called at any point

but once its PID was enabled but it was always in active.

8.3 Autonomy

Before the robot is sent into a complete autonomy test mode, we had to carry out some

manual runs to calibrate some data to make sure the robot runs smoothly without damaging

itself. A log system was designed where the program will save a CSV file on time vs scoop

current draw for us to determine what the current draw for when the scoops dig sand or gravel,

and when the scoops don’t interact with anything. We are also export percentage output data

from each Talon SRX to motor at each state when running manually to ensure that the robot

don’t rotate or dig too fast or too slow when it performs autonomy.

Project Number: KZSR

54

Chapter 9: R.O.V.E’s Accessibility For Later Teams

One of the biggest factors that set us back at the beginning of the development process

was that there was no instruction on how to run the robot. There was no guidelines on how to

wire the hardware and power them. There was no documentation on where to start on the code

while the robot program is considerably complicated. Lastly, there was no way to disassemble

the robot without having to lift the robot up in the air and extend the digger by running the

extender motor. We think it is essential to document the instructions since this project is passed

on through different generations.

9.1 Disassembly Guide (Excavator and Motor Mount)

To allow ease of use in the future during this project and potential future iterations, our

team took into consideration of designing our robot to not only solve the stated issues but to

make it easier to modify in the future. To remove the excavator plates, simply unscrew the three

screws attached to the tape drive connector on each plate. Then, as you extend the plate using the

linear drawer, unhinge the plastic clip connecting the two halves of the linear guide. This will

allow access to modify the side plates, chain guide, or even the chain itself in the chain guide.

All sprockets and sprocket hubs are standard designs, therefore if the chain is to be

placed, the only concern should be lining the tabs to be parallel to one another. In addition, the

sprockets have shaft collars that are accessible to remove the shaft from the motor mount. All

machine screws have hex caps.

55

9.2 Control System Guide

A readme file was written to not only guide later teams how to run the robot program but

also help them navigate through the code. There are instructions on what files along with their

functions are in different directories. Each method and variable is named clearly and commented

for readability.

Electronically, we are providing an easier-to-understand diagram to make sure if the

electronics are unwired, the team will still know which port and which power each element

requires to put them back together and run them.

Project Number: KZSR

56

Chapter 10: Future Work

We have a lot of ideas but being a two-person team restraints us to accomplish some of them.

10.1 Mechanical Design

A potential design in the future would be to implement a excavating system that provides

support from the bottom or rear end of the scoop. Potentially with a band similar to treadmill

belt, could support the scoops from the bottom to reduce cantilever forces in the scoop system

itself. Furthermore, a redesign to a new excavating system to reduce compressive forces the

robot undergoes during mining may be a potential iteration. These two ideas in conjunction

could present a new excavating system similar to bucket dredging systems used in today's seabed

mining.

10.2 Electrical Design

Although our robot’s bucket is quite big, as the robot is getting more efficient, we think it

is better to implement a sensor to determine the capacity of the materials that the bucket is

holding during mining process. Right now, we are assuming that the robot can dig less than its

capacity within the time span of the competition. However, we are limiting our robot with this

assumption. Having a system that can detect how much the robot is actually holding will allow

robot to expand its capacity, run faster and run multiple trips. An infrared sensor can be used to

perform this task.

57

The second improvement is on the camera servos. The cameras we have are regular

clipping cameras. To mount it on the servos, we disassembled and removed more than half of the

original cameras. The way the cameras is mounted on the servos is not stable and cameras will

drift over time as servo turns. There are some options. First option is to create a 3D printed box

for the camera onto the servo. Team can also create a drill hole that fit the servo’s screw.

10.3 Software Design

Although MagicBot framework allows the program to be clean, run and tested easily,

there is always space for development. The autonomy can be improved on both design and

implementation aspect.

10.4 Testing Area and Robot Home

 For future reference of potential testing, future teams should contact Worcester Sand &

Gravel to create a sand pit with gravel. This would require a needed base of operations for the pit

and robot to be tested in. Therefore, it is highly advised that potential teams locate a new site to

store, work on, and test the robot.

Project Number: KZSR

58

Chapter 11: Conclusion

This project describes our process on upgrading WPI NASA mining robot from October 2018 to

April 2019. Our goals were to redesign and implement the digging mechanism as well as

enabling the robot to behave autonomously within the scope of the competition. Despite the

cancellation of NASA RMC half way through the project, our team still accomplished many of

the goals that were determined at the beginning of this project.

Table 2: End Progress Table

Parameter Specification Requirement Met

Maximum Size 1.5 m x 0.75 m x 0.75 m Met

Maximum Mass 70kg In progress of measuring

Digging Mechanism Scoops turns smoothly when

going through sprockets and

run without jamming when

fully emerged in sand and

gravel

Designed and manufactured,

not tested

Control System Full Autonomy Designed and tested

separately with motor

controllers but not with robot

Dust-proof Design a box to protect the

electronics from dust

In progress

At the time of submission, we are in the process of testing the new system with load. Our

team does not have access to a pit of sand and gravel similar to the arena used during the

competition. However, using excess gravel, we were able to test the new motor mounting plate

59

design and its efficiency. The gravel carried in the scoop was easily able to drop into the bucket

of the with the new geometry of the chain path.

 We found that the tolerancing of the scoops, fastener tabs, chain guides, and chain are

extremely tight and are the main cause of the forms of jamming that is incurred as we tested our

new design. Ensuring the tabs of each scoop are dimensioned exactly will allow the scoops to

travel through the path unaffected. We discovered this by testing the tabs connected to each other

without scoops and with the scoops. This helped us understand that the chain system is not at

fault, but the fastener tabs are too thick, forcing the chain to displace just enough to jam at the

engagement corner but nowhere else in the system. The power transmission of the shaft and

coupler are inefficient as well, leading to one side traveling slower due to the coupler not

transmitting the power to the second side of the chain system.

60

Appendix 1: Robot Program UML Diagram

Project Number: KZSR

61

References

[1] NASA. (May 24th, 2019). Programs and Missions. Retrieved from

https://mars.nasa.gov/programmissions/missions/missiontypes/rovers/

[2] Alabama Astrobotics. (May 24th, 2019). The University of Alabama Astrobotics. Retrieved

from http://www.alabamaastrobotics.com/nasa-rmc-2018-cycle.html

[3] Castelino, Hagen, Khan, Kumar, and Patias. (May 24th, 2019). Ibex: Robotics Mining

Platform. Retrieved from

https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=7622&context=mqp-all

[4] Quora. (May 24th, 2019). What qualities or capacities of Python makes it a good

programming language for robotic engineering. Retrieved from https://www.quora.com/What-

qualities-or-capabilities-of-python-makes-it-a-good-programming-language-for-robotic-

engineering

[5] Quora. (May 24th, 2019). Why is Robot Operating System ROS preferred. Retrieved from

https://www.quora.com/Why-is-Robot-Operating-System-ROS-preferred

[6] Intorobotics. Quora. (May 24th, 2019). 15 reasons to use the robot operating system ROS.

Retrieved from https://www.intorobotics.com/15-reasons-to-use-the-robot-operating-system-ros/

[7] BaneBots. (May 24th, 2019). P60 Gearbox, Custom 256:1. Retrieved from

http://www.banebots.com/product/P60C-4444.html

https://mars.nasa.gov/programmissions/missions/missiontypes/rovers/
http://www.alabamaastrobotics.com/nasa-rmc-2018-cycle.html
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=7622&context=mqp-all
https://www.quora.com/What-qualities-or-capabilities-of-python-makes-it-a-good-programming-language-for-robotic-engineering
https://www.quora.com/What-qualities-or-capabilities-of-python-makes-it-a-good-programming-language-for-robotic-engineering
https://www.quora.com/What-qualities-or-capabilities-of-python-makes-it-a-good-programming-language-for-robotic-engineering
https://www.quora.com/Why-is-Robot-Operating-System-ROS-preferred
https://www.intorobotics.com/15-reasons-to-use-the-robot-operating-system-ros/
http://www.banebots.com/product/P60C-4444.html

62

[8] VEX Robotics. (May 24th, 2019). 775Pro. Retrieved from

https://www.vexrobotics.com/775pro.html

[9] VEX Robotics. (May 24th, 2019). VersaPlanetary Gearbox. Retrieved from

https://www.vexrobotics.com/versaplanetary.html#Docs_&_Downloads

[10] McMaster-Carr. (May 24th, 2019). Chain Guides. Retrieved from

https://www.mcmaster.com/chain-guides

[11] National Instruments. (May 24th, 2019). roboRIO Advanced Robotics Controller. Retrieved

from http://www.ni.com/en-us/shop/select/roborio-advanced-robotics-controller

[12] Raspberry Pi. (May 24th, 2019). Raspberry Pi 3 Model B+. Retrieved from

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/#buy-now-modal

[13] Kauai Labs. (May 24th, 2019). navX-MXP Robotics Navigation Sensors. Retrieved from

https://www.kauailabs.com/store/index.php?route=product/product&product_id=56

[14] Robot Py. (May 14th, 2019). RobotPy. Retrieved from https://robotpy.readthedocs.io/

https://www.vexrobotics.com/775pro.html
https://www.vexrobotics.com/versaplanetary.html#Docs_&_Downloads
https://www.mcmaster.com/chain-guides
http://www.ni.com/en-us/shop/select/roborio-advanced-robotics-controller
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/#buy-now-modal
https://www.kauailabs.com/store/index.php?route=product/product&product_id=56
https://robotpy.readthedocs.io/

